Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

نویسندگان

  • Guangyao Zhao
  • Lemuel Tong
  • Pengpeng Cao
  • Mark Nitz
  • Mitchell A. Winnik
چکیده

Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting colloidal stabilization factors in crowded polymer solutions by forming self-assembled monolayers on gold nanoparticles.

An ideal colloidal system should be highly stable in a diverse range of buffer conditions while still retaining its surface accessibility. We recently reported that dispersing citrate-capped gold nanoparticles (AuNPs) in polymers, such as polyethylene glycol (PEG), can achieve such a goal because of contributions from depletion stabilization. Because AuNPs can weakly adsorb PEG to exert steric ...

متن کامل

Potential Toxicity of Up-Converting Nanoparticles Encapsulated with a Bilayer Formed by Ligand Attraction

The cellular toxicity of nanoparticles that were capped with a bilayered ligand was studied using an up-converting (UC) phosphor material as a representative nanoparticle (NP). The results indicate that although UC NPs are known to be nontoxic, the toxicity of the NPs depends strongly on ligand coordination conditions, in addition to the other commonly known parameters such as size, structure, ...

متن کامل

Controlling colloidal stability of silica nanoparticles during bioconjugation reactions with proteins and improving their longer-term stability, handling and storage

PAPER V. Gubala et al. Controlling colloidal stability of silica nanoparticles during bioconjugation reactions with proteins and improving their longer-term stability, handling and storage Despite the potential of antibody-coated nanoparticles (Ab-NPs) in many biological applications, there are very few successful, commercially available examples in which the carefully engineered nanomaterial h...

متن کامل

Chitosan Capped Silver Nanoparticles as Colorimetric Sensor for the Determination of Iron(III)

A selective, simple and low-cost method for the colorimetric determination of Fe3+ ions based on chitosan capped silver nanoparticles (Chit-AgNPs) was presented. Chitosan is a cationic polyelectrolyte and possesses amino and hydroxy groups which make it widely used as a capping agent for Ag NPs. The synthesized chitosan capped silver nanoparticles with excellent colloidal stability were charact...

متن کامل

Highly emissive PEG-encapsulated conjugated polymer nanoparticles.

A novel bioimaging probe based on a conjugated polymer, poly(9,9-dihexylfluorene-alt-2,1,3-benzoxadiazole) (PFBD), is demonstrated. Transfer of the hydrophobic polymer into water using a short chain poly(ethylene glycol) (PEG) resulted in conjugated polymer nanoparticles (PEG-PFBD) with a fluorescence quantum yield of 46%. The PEG-PFBD nanoparticles possessed several desirable structural and ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014